Effects of mTOR Inhibitors on Components of the Salvador-Warts-Hippo Pathway
نویسندگان
چکیده
The MST/Salvador-Warts-Hippo and mTOR/Akt/PI3K growth signaling pathways have been established as important modulators of cell growth, proliferation and cell survival in controlling organ size in Drosophila and mammals. Here, we sought to determine the role of the MST family of kinases, some of which are components of the Hippo pathway, and their closely related Sterile 20-like kinases (STK) as candidates for mediating cross-talk between the Hippo and mTOR pathways. Expression analysis in the HepG2 and MCF7 cell lines demonstrated common expression of MST1/2/4, MAP4K3/4/5, STK 24 (MST3), STK25, STK39, Pak1, SLK, Stradα/β and TAO2. All components of the Hippo signaling pathway are present in both cell lines except for YAP1 in MCF7 cells. mTOR inhibition via rapamycin decreases TAZ levels in HepG2 but not MCF7 cells and increases TEAD1 levels in MCF7 but not HepG2 cells, suggesting a selective role of the mTOR pathway in regulating these Hippo targets in a cell type-specific manner. Furthermore, the cellular localization of TAZ changes in response to mTORC1/2 inhibitors and Akt inhibition. These findings demonstrate the mTOR-dependent regulation of Hippo signaling at the level of the transcriptional regulators TAZ and TEAD1 and highlight the potential role for mTOR inhibitors in regulating Hippo-signaling dependent tumors.
منابع مشابه
Investigating the mRNA expression levels of Hippo pathway in adenoma polyps
Background Neoplastic adenomatous polyps generating from the epithelial cells are considered benign tumors. Adenomatous polyps are common in western countries and it can take seven to 10 or more years for an adenoma to evolve into cancer. The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the r...
متن کاملLocalization of Hippo signalling complexes and Warts activation in vivo
Hippo signalling controls organ growth and cell fate by regulating the activity of the kinase Warts. Multiple Hippo pathway components localize to apical junctions in epithelial cells, but the spatial and functional relationships among components have not been clarified, nor is it known where Warts activation occurs. We report here that Hippo pathway components in Drosophila wing imaginal discs...
متن کاملFat Cadherin Modulates Organ Size in Drosophila via the Salvador/Warts/Hippo Signaling Pathway
BACKGROUND The atypical Fat cadherin has long been known to control cell proliferation and organ size in Drosophila, but the mechanism by which Fat controls these processes has remained elusive. A newly emerging signaling pathway that controls organ size during development is the Salvador/Warts/Hippo pathway. RESULTS Here we demonstrate that Fat limits organ size by modulating activity of the...
متن کاملDifferential requirement of Salvador-Warts-Hippo pathway members for organ size control in Drosophila melanogaster.
The Salvador-Warts-Hippo (SWH) pathway contains multiple growth-inhibitory proteins that control organ size during development by limiting activity of the Yorkie oncoprotein. Increasing evidence indicates that these growth inhibitors act in a complex network upstream of Yorkie. This complexity is emphasised by the distinct phenotypes of tissue lacking different SWH pathway genes. For example, e...
متن کاملUpstream Regulation of the Hippo Size Control Pathway
The newly discovered Salvador-Warts-Hippo (SWH) pathway is a key regulator of tissue growth during both development and disease. The first identified components of this pathway represent core downstream effector proteins: the kinases Warts and Hippo; the adaptor proteins Salvador and Mats; and the transcriptional co-activator Yorkie. More recently, a surprising number of proteins have been impl...
متن کامل